
Plenary Lecture #3
Manufacturing empowered by physics-aware digital twins

Francisco Chinesta
Arts et Métiers Institute of Technology

Francisco.Chinesta@ensam.eu 

Keywords: Model Order Reduction, Artificial Intelligence, Digital Twin, Diagnosis, Prognosis

Background

Virtual twins in the form of simulation tools that represent the physics of materials, processes
and structures, making use of physics-based models, were the main protagonists of the XX
century engineering. Thus, the virtual twin consists of the so-called nominal model, expected
representing the  observed  reality,  in  general  calibrated  offline from the  data  provided by
specific tests, enabling to predict the responses to given loadings, the last also nominal in the
sense that they are expected representing the ones that the design will experience in service. 
For  that  purpose,  the  mathematical  models  consisting  of  complex  partial  differential
equations, generally strongly nonlinear and coupled, are discretized despite of the fact that in
many cases the calculations are very costly in computational resources and computing time.
The XXI century engineering requests focusing on the real system (instead of on its nominal
representation) in operation, subjected to the real loading that it experienced until the present
time (instead of the nominal loading) in order to perform efficient diagnosis, prognosis and
prescriptive decision making.
Here, usual modeling and simulation techniques are limited, the former because of the fact
that a model is sometimes no more than a crude representation of the reality, and the last
because of the computational cost that its solution using well  experienced state-of-the-art
discretization techniques entails.
Recent Model Order Reduction (MOR) techniques enable evaluating in almost real-time the
solution of physics-based models.  These techniques neither reduce nor modify the model
itself,  they  simply  reduce  the  complexity  of  its  solution  by  employing  more  adapted
approximations of the unknown fields [1]. 
Model  Order  Reduction  techniques  express  the  solution  of  a  given  problem  (a  PDE  for
instance) into a reduced basis with strong physical or mathematical content. Sometimes these
bases  are  extracted  from  some  offline  solutions  of  the  problem  at  hand,  as  the  proper
orthogonal decomposition (POD) or the reduced bases method (RB) perform. Now, when
operating within the reduced basis, the solution complexity scales with the size of this basis, in
general much smaller than the size of the multi-purpose approximation basis associated with
the finite element method (FEM) whose size scales with the number of nodes involved in the
mesh that covers the domain in which the problem is defined. Even if the use of a reduced
basis implies a certain loss of generality, it enables impressive computing time savings while
guaranteeing acceptable accuracy as soon as the problem solution continues living in the
space spanned by the reduced basis. 
The main drawbacks  of  those techniques are:  (i)  their  limited generality  when addressing
situations far from the ones that allowed the reduced basis construction; (ii) the difficulties of
addressing nonlinear models, that require the use of advanced strategies; and (iii) its intrusive
character with respect to its use in well experienced and validated existing software. 
For circumventing, or at least alleviating, the just referred computational issues, an appealing
route consists of constructing the reduced basis at the same time that the problem is solved,
as  proper  generalized decompositions  (PGD)  perform [2-4].  However,  PGD is  even more
intrusive  than  POD  and  RB  referred  above.  Thus,  non-intrusive  PGD  procedures  were
proposed, that proceed by constructing the parametric solution of the parametric problem
from a number of high-fidelity solutions performed offline, for different choices of the model
parameters.  Among  these  techniques  we  can  mention  the  SSL-PGD,  that  considers



hierarchical  separated bases for  interpolating the precomputed solutions  [5],  or  its  sparse
counterparts [6,7]. 
Once the parametric  solution of  the problem at  hand is  available,  it  can be particularized
online  for  any  choice  of  the model  parameters,  enabling simulation,  optimization,  inverse
analysis,  uncertainty propagation, simulation-based control,  ...  all  them under the stringent
real-time constraint [3]. 
On  the  other  hand,  recent  advances  in  data-science,  artificial  intelligence  and  machine
learning make possible an alternative data-driven engineering. The data-driven route becomes
especially appealing when:

 Physics-based models are unknown or the ones that exist remains too inaccurate in
their  predictions.  In  this  case  the  physics-based  model  can  be  enriched  by
considering the data-driven model of the deviation, at the heart of the Hybrid Twin
concept [8].

 Diagnosis can be performed in a very efficient from the solely use of data, however,
its explanation requires deeper modelling approach.

 MOR becomes difficult  to  perform or employ,  with the associated effects on the
prognosis performances.
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